بررسی کارایی روش‌های شبکه عصبی و رگرسیون چند متغیره در برآورد تابش کل خورشیدی در چند ایستگاه معرف اقلیم‌های خشک و نیمه‌خشک

نویسندگان

  • بهرام بختیاری دانشیار، بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان
  • صدیقه عوض پور دانشجوی کارشناسی ارشد مهندسی منابع آب و عضو انجمن پژوهشگران جوان، بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان
  • کورش قادری دانشیار، بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان
چکیده مقاله:

در این مطالعه قابلیت روش­های پرسپترون چند لایه (MLP) و رگرسیون خطی چند متغیره در برآورد شدت تابش کل خورشیدی مورد بررسی قرار گرفت. به این منظور از داده­های روزانه 25 ساله (2017-1992) شامل دمای حداکثر، میانگین دما، میانگین رطوبت نسبی، ساعات آفتابی و شدت تابش خورشیدی در پنج ایستگاه همدیدی بندرعباس، زنجان، شیراز، کرمان و مشهد استفاده شد. ورودی­های بکار رفته در مدل­ها شامل ترکیبات مختلفی از این متغیر­ها بودند. جهت بررسی عملکرد مدل­ها از آماره­های ضریب تعیین (R2)، ریشه میانگین مربعات خطا (RMSE)، میانگین مطلق خطا (MAE) و شاخص توافق (IA) استفاده شد. برای آموزش ساختار شبکه عصبی دو الگوریتم تنظیم بیزی (Br) و لونبرگ-مارکوات (LM) مورد مقایسه قرار گرفتند. علاوه بر این، فرآیند­های آموزش و اعتبارسنجی بر روی داده­ها انجام شد. نتایج مدل رگرسیون نشان داد که تمامی متغیرهای ورودی در ایستگاه­های بندرعباس، زنجان و شیراز بر تابش تأثیرگذارند، اما تأثیرگذاری رطوبت نسبی بر مقدار تابش در ایستگاه‌های کرمان و مشهد اندک بود. کاربرد ANN با دو الگوریتم نشان داد که ایستگاه­های بندرعباس و کرمان با الگوریتم Br و ایستگاه­های زنجان، شیراز و مشهد با الگوریتم LM نتایج بهتری  به دست می­دهند. با توجه به نتایج به دست آمده، کمترین مقادیر RMSE، MAE و بیشترین مقادیر IA و R2 مربوط به ایستگاه کرمان با اقلیم خشک سردسیر به ترتیب 799/2، 94/1، 954/0 و 838/0 می­باشد. در یک نتیجه­گیری کلی می­توان گفت که کارایی مدل شبکه عصبی در برآورد تابش خورشیدی نسبت به مدل رگرسیون خطی چند متغیره در مقایسه با داده­های مشاهداتی بهتر بوده است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)

مسکن همواره نیازی اساسی در جامعه تلقی می‌گردد. بازار مسکن طی سال‌های گذشته یکی از پرنوسان-ترین بخش‌های اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخش‌های اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیش‌بینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیش‌بینی قیمت مسکن در ش...

متن کامل

مقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)

مسکن همواره نیازی اساسی در جامعه تلقی می‌گردد. بازار مسکن طی سال‌های گذشته یکی از پرنوسان-ترین بخش‌های اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخش‌های اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیش‌بینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیش‌بینی قیمت مسکن در ش...

متن کامل

ارزیابی دقت روش‌های شبکه عصبی مصنوعی و عصبی- فازی در شبیه‌سازی تابش کل خورشیدی

Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...

متن کامل

Degenerate Four Wave Mixing in Photonic Crystal Fibers

In this study, Four Wave Mixing (FWM) characteristics in photonic crystal fibers are investigated. The effect of channel spacing, phase mismatching, and fiber length on FWM efficiency have been studied. The variation of idler frequency which obtained by this technique with pumping and signal wavelengths has been discussed. The effect of fiber dispersion has been taken into account; we obtain th...

متن کامل

برآورد تبخیر پتانسیل از طریق رگرسیون چند متغیره

فرآیند تبدیل آب مایع به بخار را تبخیر گویند. در سیکل هیدرولوژی، تبخیر پدیده پیچیده ­ای است که محاسبات گسترده ­ای را طلب می­ کند. در این تحقیق سعی شده تا روش ساده ­ای جهت محاسبه تبخیر پتانسیل ارایه گردد و با کمک گرفتن از روش ­های آماری و عناصر اقلیمی مؤثر در تبخیر، میزان تبخیر انجام شده از سطوح آبی محاسبه شود. در این روش از رگرسیون چند متغیره و معادله خط استفاده گردید و از آمار تشت تبخیر به عنوا...

متن کامل

ارزیابی دقت روش های شبکه عصبی مصنوعی و عصبی- فازی در شبیه سازی تابش کل خورشیدی

تابش خورشیدی از پارامترهای مهم اقلیمی است که با بسیاری از فرآیندهای هیدرولوژی و هواشناسی ارتباط مستقیم و تنگاتنگی دارد. این پارامتر از ارکان اساسی توسعه تحقیقات کاربردی انرژی خورشیدی به شمار می رود. مطالعه حاضر به منظور ارزیابی مدل های هوش مصنوعی در پیش بینی مقدار تابش کل خورشیدی رسیده به سطح افقی زمین، انجام گرفت. در این تحقیق شبکه عصبی مصنوعی (ann) و سیستم استنتاج تطبیقی عصبی- فازی (anfis) جه...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 50  شماره 8

صفحات  1855- 1869

تاریخ انتشار 2019-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023